

5020 GPS Kurzbedienung Vers.1.18

Flytec AG Ebenaustrasse 18 , CH – 6048 Horw Switzerland Tel. +41 41 349 18 88 – flytec@swissonline.ch - www.flytec.ch

1 Bedienung

1.1 5020-GPS Ein und Ausschalten

Das Gerät wird durch Drücken der Taste eingeschaltet. Damit kein versehentliches Einschalten vorkommt, muss dies nach der Displayaufforderung "switch on ?? Press Enter" durch drücken der Taste " Enter " bestätigt werden. Zum Ausschalten muss die gleiche Taste 3 Sek. lang gedrückt werden und die Frage: "switch off?? Press Enter " mit der Taste " Enter " bestätigt werden

1.2 Tastatur

Hinweis zum Ausschalten: Nach dem Beenden eines Fluges kann die Berechnung der digitalen Unterschrift bis zu 2 Min. dauern. Bitte warten Sie solange, bis die Meldung "Generating Digital Signature" verschwindet und drücken Sie nochmals die Taste Θ /ESC.

1.3 Hauptbildschirm

Informationszeilen

1.4 Map Bildschirm

Informationszeilen

Es erfolgt die bildschirmoptimierte Darstellung des Flugweges (Nord ist oben!). Zusätzlich werden gespeicherte Wegpunkte mit Kreuz und Namen dargestellt, sowie der Maßstab.

F2: Zoom in: Stufenweise wird der Maßstab vergrößert, bis ca. 0.5–1.0 km. Damit sind einzelne Kreise deutlich erkennbar (abh. vom eingestellten Recording Intervall)

F1: Zoom out: Stufenweise wird der Maßstab verkleinert, bis zur bildschirmoptimierten Darstellung.

Enter: Aus jeder Darstellung wieder zurück zur bildschirmoptimierten Darstellung.

ESC: Zurück zum Flugauswahlmenü

Alle anderen Tasten bewirken ein Neuzeichnen des Tracks in der aktuellen Auswahl.

Pfeiltasten Pan: Wenn man einen Flug im Flight-Memory anschaut, kann mit den Pfeiltasten der dargestellte Bereich nach oben, unten, links oder rechts verschoben werden. Diese Funktion ist während dem Flug nicht möglich.

Während dem Flug ist die aktuelle Position in der Mitte. Der Bildschirm verschiebt sich um einen halben Bildschirm, wenn die aktuelle Position den Rand erreicht.

Anmerkung: Jeder Bildaufbau kann je nach Datenmenge ein paar Sekunden dauern. Je mehr Trackpunkte schon im Speicher sind, umso länger geht der Bildaufbau. Wird während des Bildaufbaus z.B. eine Zoom- oder Pan-Taste betätigt, wird der momentane Bildaufbau abgebrochen und mit den neuen Werten gestartet. Somit kommt man zügig zur gewünschten Darstellung.

Auch Flüge der Vergangenheit, soweit noch gespeichert, können dargestellt werden. Während dem Flug kann durch kurzen Druck auf die *ESC* Taste auch auf eine Realtime-Karten-Darstellung umgeschaltet werden. Vario und Höhe erscheinen digital unter der Karte. Bei der FAI-Route werden auch die Zylinder um die WP dargestellt.

1.5 Endanflug Bildschirm

Der Endanflug – Bildschirm dient als Hilfe beim Endanflug. Er ist weniger geeignet für den normalen Flug. Er wird normalerweise aktiviert in der letzten Thermik vor dem Ziel.

Die horizontale Skala zeigt die Abweichung zwischen aktuellem Track und Bearing (der Richtung ins Ziel). 1 Teilstrich ist 10°, zwischen zwei grossen Strichen sind 20°. Die vertikale Skala zeigt die Abweichung der benötigten Gleitzahl ins Ziel von der Zahl des besten Gleitens des Fluggerätes, so wie sie in den Basic Settings eingestellt ist. Ein Teilstrich entspricht 0.5 Gleitzahl. Zwischen zwei grossen Teilstrichen ist 1 Gleitzahl. Das Beispiel zeigt ein Fluggerät mit Gleitzahl 8. Die benötigte Gleitzahl ins Ziel beträgt 5.7. Das Fluggerätesymbol befindet sich um 2.3 Einheiten oberhalb des Punktes des besten Gleitens.

1.6 Main Setup Menu

Flightmemory	Liste der Flüge Siehe Kapitel 8 Flugspeicherung
Waypoints	Liste der Wegepunkte mit Möglichkeit zu editieren Siehe
	Kapitel 7.8 Wegepunkte und Koordinaten
Routes	Liste der Routen mit Möglichkeit zu editieren. Siehe Kapitel 7.11
Restricted Areas	Liste der Lufträume mit Möglichkeit zu editieren Siehe Kapitel 7.16
Simulation	Hier können die wichtigsten Flugmanöver simuliert werden. Ideal zum Kennenlernen Siehe Kapitel 10.1
Basic Settings	Hier können die wichtigsten Einstellungen für das Gerät gemacht werden. Siehe Kapitel 1.6 Basic Settings
Factory Settings	Nur für Service Passwortgeschützt Siehe Kapitel 10.3
Opt. SW-Packages	Hier können gekaufte SW Pakete freigegeben werden. Siehe Kapitel 10.4

1.7 Basic Settings

Eine Reihe von Einstellungen erlauben es, das Gerät nach den Wünschen des Benutzers zu programmieren. Alle Grundeinstellungen können mit der PC-Software "Flychart 4.32.26" am PC komfortabel eingestellt und über die PC-Schnittstelle in das Gerät übertragen werden. Mit Basic Settings / Init EEPROM werden vom Hersteller erprobte Grundeinstellungen aufgerufen. Diese Funktion sollte nur im Notfall benutzt werden, da alle WP und Routen sowie der Flugspeicher auch gelöscht werden.

Zumeist werden bei den einzelnen Einstellungen der mögliche Einstellbereich und der bisher geltende Wert angezeigt. Soll dieser Wert verändert werden, so gelangt man durch Drücken auf die Taste *Enter* in den Änderungs-Modus, der zu verändernde Wert blinkt und kann mit Hilfe der Tasten ∇ und \triangle abgeändert werden. Drücken auf die Taste *Enter* übernimmt den neuen Wert, Drücken auf die Taste *ESC* kehrt zur vorherigen Einstellung zurück.

Bezeichnung	Bedeutung	Werkseinstellung
Displaycontrast	Bereich 0 100 %	75 %
Record-Interval	Zeitl. Abstand pro Aufzeichnungspunkt	10 Sec
Recording Mode	Autom. oder manuelle Flugaufzeichnung	Aut.
Digit. Variomode	Umschaltung Integr Vario; Integr	Integr. 1 30 sec
	Zeitkonstante	1 sec

Variotone	Steigton-Frequenz, Modulation; Sinkton-	1200 Hz; Mod = 5,
	Freq. Akustik-Dämpfung; Pitch	700 Hz, 8, Pi = 3
Batterytype	Batterietyp, Alkaline oder NiMH Akku	Alkaline
Audio threshold	Feinjustierung des Steigtoneinsatzes	2 cm/sec
	max. 20 cm	
Sink tone thres.*	Einsatzpunkt des Sinktons.	0,8 m/s (ft/m)
L.thermal thres	Letztes Steigen, auf das der Last thermal	1.0 m/s
	Pfeil zeigen soll 0.5 bis 3 m/s	
Vario/Spd delay	Erfassungszeitkonstante f. Vario u. Speed	1, 12 (≈ 1,2 sec)
Best L/D	Punkt des besten Gleitens mit	
	zugehöriger Geschwindigkeit.	
Stallspeed	Einsatz d. Stallalarms u. Höhengrenze	30 km/h (mph)
		0 m (bel.Alti)
Spd correct vane	Flügelrad Korrektur 70 150 %	100 %
Units	Meter oder feet; m/s oder fpm, km/h oder	M, m/s, km/h ; DegC,
	mph oder knots Temp. In DegC oder	km
	DegF. Km oder miles	
Coordin. Format	dd'mm.mmm oder dd.ddddd oder	dd'mm.mmm
	dd'mm"ss UTM oder Swiss-Grid	
Time, Date ,Year	Unterschied zu UTC; Tag-Monat; Jahr	0, 00:00, 2000
Pilotname	Eingabe des Piloten Namens; max 16	not set
	Zchn	
Glidertype	Name des Fluggerätes für OLC	not set
Glider-Id	Ident Nr. Des Fluggerätes für OLC	not set
Del all records	Löschen des Flug-Speichers	no
Del all WP &Rts	Löschen aller WP und Routen	no
Init EEPROM	Rücks. der Basic-Werte auf	no
	Werkseinstellung	
Init CTRs	Reorganisation des Memorybereichs	

* das Wort "threshold" bedeutet "Schwellwert bzw. Einsatzpunkt"

Achtung: Beim Löschen der WP, Routen oder Flüge dauert der Löschvorgang einige Sekunden, während dieser Zeit muss gewartet werden.

1.8 Userfields

Der Hauptbildschirm als auch der Endanflug-Bildschirm enthalten je 3 Seiten, die mit ► weiter geschaltet werden. Damit ist es möglich je Bildschirm max. 9 der nachstehend aufgeführten Messwerte anzuzeigen. Die Seitenzahl wird unter dem Batterie-Status als P1 ... P3 angezeigt

Alt a. BG	Sicherheitshöhe über dem Pfad für bestes Gleiten*
FL (ft)	Flugfläche (= Flight level) in feet. Nicht verstellbar
Air Spd	Geschwindigkeit durch die Luft TAS, nur bei angeschlossenem
	Flügelradsensor
Alt a. Gl	Höhe über dem Ziel, über die gewählte Route gerechnet*
Dist GI	Entfernung zum Ziel über alle Wegpunkte gerechnet*
Vario	Das digitale Vario als Userfield für die Endanflugseite
A1	Die Höhe A1 als Userfield für die Endanflugseite
Dst Toff	Distanz zum Start (Beginn Flugerkennung)

Dist Cyl	Distanz zum Wegpunktzylinder in einer Competition Route
Dist to WP	Abstand zum gewählten Wegepunkt *
FI.Time	Flugzeit seit Start
GND speed	Geschwindigkeit über dem Boden * (= GS)
Time	Uhrzeit
Bearing	Richtung zum gewählten Wegepunkt *
Wind Spd	Die errechnete Windgeschwindigkeit
Spd-Diff	Windkomponente (Groundspeed – True Airspeed)*
Track	Flugrichtung (Kurs)*
Temp	Temperatur der Platine
Alt 2	Referenzhöhe, ist beliebig auf 0 setzbar
Alt 3	Kumulierter Höhengewinn
QNH hPa	Luftdruck in Hektopascal
L/D Gnd	aktuelle GZ über Grund (= Groundspeed/Sinken)*
L/D Air	Gleitzahl durch die Luft, nur bei angeschlossenem Flügelradsensor
L/D Req	erforderliche Gleitzahl über Grund zum Erreichen des WP*
L/D r.Gl	Erforderliche Gleitzahl über Grund ins Ziel über mehrere Wegpunkte
Dist to [^]	Distanz zum letzten Steigen*

* Anzeige nur bei eingeschaltetem GPS Empfänger

1.9 Batterie - Management

Zwei Bargraph Skalen zeigen den Ladezustand der Batterien an. Das Flytec 5020 hat 2 Bänke à 2 Batterien. Bank 1 muss immer bestückt sein. Bank 2 kann frei bleiben. Es ist jedoch zu empfehlen, die 2. Bank ebenfalls zu bestücken. Sobald die erste Bank aufgebraucht ist, schaltet das Gerät automatisch auf die zweite Bank um. Wenn die zweite Bank noch nicht fertig aufgebraucht ist, und man in die erste Bank wieder Batterien einlegt, schaltet das Gerät wieder auf die erste Bank zurück. Wir empfehlen, nach einem langen Flug die angebrauchten Batterien der Bank 2 in die Bank 1 einzulegen und die neuen Batterien in die Bank 2 einzulegen. Damit ist gewährleistet, dass sie die Batterien immer ganz aufbrauchen können, ohne dass die Gefahr besteht, dass während einem Flug die Batterien leer sind. Die aktive Bank wird Schwarz Weiss dargestellt, die nicht aktive Bank in Grau.

Hinweis: Bei Geräten bis Serie Nr. 5500 sind die beiden Bänke vertauscht.

Folgende Batterien können verwendet werden

- Je 2 Stück pro Bank Alkaline High Power Batterien 1.5 Grösse AA. Geschätzte Betriebsdauer 2 mal 13h = 26h insgesamt
- Je 2 Stück pro Bank NiMH Akkus 2100mAh, 1.2V Grösse AA. Geschätzte Betriebsdauer 2 mal 11h = 22h insgesamt

Die richtigen Batterietypen sind in den Basic Settings einzustellen. Eine falsche Einstellung kann dazu führen, dass das Gerät vorzeitig, beim umschalten von Bank 1 auf 2, abschaltet.

Wir empfehlen keine NiCd Akkus zu verwenden. Sie haben deutlich kleinere Kapazitäten und sind weniger Umweltfreundlich. Die Umschaltschwellen sind nicht für NiCd Akkus ausgelegt

Die Geschätzte Betriebsdauer basiert auf einer normalen Temperatur. Bei Kälte haben die Batterien und Akkus eine deutlich kürzere Lebensdauer.

1.10 Datenaustausch über einen PC

Zur Grundausstattung des 5020-GPS gehört auch ein Datenkabel zur seriellen PC-Schnittstelle (9 pol Sub-D Stecker). Damit kann der Datentransfer in beiden Richtungen erfolgen. Die Übertragung erfolgt mit: 57600 Baud; 8 databit; 1 stopbit; no parity; Xon/Xoff;

Über die RS232 Schnittstelle kann das 5020-GPS **ausgelesen und beschrieben** werden:

- Gesamte Gerätekonfiguration (Basic Settings, Benutzerdef. Anzeigen)
- Wegepunktliste
- Routenliste
- Liste der Lufträume (CTR's)

Gespeicherte Flüge im Flugmemory können nur ausgelesen werden.

Wichtig: Zum Übertragen obiger Daten ist das Anschlusskabel zum PC erst dann in das 5020-GPS einzustecken, wenn das Gerät bereits eingeschaltet ist und das zum Überspielen der Daten erforderliche Programm aufgerufen wurde.

Zum Datentransfer muss das Instrument in das Main Setup Menü geschaltet werden (Menü Taste lang drücken).

Zum Übertragen eines abgespeicherten Fluges ist die Anweisung der verwendeten Software zu befolgen (Bei den meisten Softwareprogrammen muss noch in das Flightmemory resp. in den Fluganalysis Modus geschaltet werden). Mit diversen Software Programmen können die IGC-Files, teilweise sogar die OLC Files erzeugt werden. Weitere Informationen unter http://www.onlinecontest.de/holc/ . Wir empfehlen ihnen die Verwendung von Flychart, das sie von der Website www.flytec.ch herunterladen können.

Mit Flychart können alle Geräteeinstellungen bequem am PC gemacht werden.

Trackview (Freeware) Daniel Zuppinger (für den OLC und CCC) www.softtoys.com/

Maxpunkte (Freeware	Programm vom D.Münchmeyer & S.Harsch für den	
	Online-Contest des DHV DHV http://www.flugplatz- beilrode.de/maxpunkte/download.html	
Compe-GPS	Für Wettbewerbe u. Privatpiloten, 3-D Darstellung www.compegps.com	

Seeyou Flugplanungs- und Analysesoftware, www.seeyou.ws/

GPSDump Stein Sorensen . Ein einfaches Programm um IGC Files zu erhalten http://www.multinett.no/~stein.sorensen/

1.11 Neue Software- ins 5020-GPS übertragen

Wie bei vielen anderen modernen Geräten besteht auch die Möglichkeit die Software Version nachzurüsten. Dadurch können Pilotenwünsche oder neue Wettbewerbsreglemente auch in Zukunft rasch realisiert werden. Die Fa. Flytec wird von Zeit zu Zeit Programm-Upgrades der 5020-GPS - Firmware auf ihrer Homepage ins Internet stellen, die über die Downloadfunktion vom Anwender kostenlos heruntergeladen, abgespeichert und dann ins 5020-GPS übertragen werden können. Um mit dem eigenen PC in das Flash-Memory des 5020-GPS schreiben zu können, ist das Programm "Flasher.exe" nötig, das in verdichteter Form unter dem Namen Flasher.zip vorliegt. Außerdem muss auch die eigentliche, zu übertragende Firmware von der Homepage geholt werden. Sie heisst z.B "5020v112.moc" (ca. 500 KB) was der Version 1.12 entspricht.

Wir empfehlen Ihnen sämtliche Dateien, die damit zusammenhängen, in einem einzigen Unterverzeichnis unterzubringen (z.B C:\Programme\FlytecFlasher\). Nach dem Dekomprimieren der ZIP-Datei werden einige Dateien erzeugt. Ein Doppelklick auf die Datei "Flasher.exe" startet das Programm.

Unter "Setup" wird die serielle Schnittstelle (COM1 oder COM2) eingestellt. Mit "File" wählen Sie das zu übertragende Programm mit der Endung " .moc ", oder sie können es aus dem Explorer in das Feld ziehen.

Starten sie die Datenübertragung. Die Zahlen die im rechten Feld erscheinen sind die Antworten des Gerätes.

Wichtig: Achten Sie darauf, dass das 5020-GPS <u>im Gegensatz zur Flugdaten-Übertragung</u> beim Anstecken des Kabels zum PC **nicht** eingeschaltet ist. **Achtung:** Lassen Sie das Verbindungskabel zum PC nie über längere Zeit am ausgeschalteten Instrument stecken. Es wird dabei Energie verbraucht und die Batterien könnten unbemerkt leer laufen.

2 Technische Daten

Abmessungen:	165 x 73 x 38 mm	
Gewicht:	286 Gramm (Mit 4 Alkaline Batterien, ohne	
	Halterung)	
Stromversorgung:	2 oder 4 Alkaline Batterien AA oder	
	Nickelmetallhydrid Akku 2Ah; 1.2V	
Batteriedauer:	> 30 Std bei 4 Alkaline Batterien	
Höhenmesser:	max. 8000 m	Auflösung 1m
Variometer:	analog ± 8 m/s	Auflösung. 0,2 m/s
	digital ± 100 m/s	Auflösung 0,1 m/s
Geschwindigkeit Flügelrad:	digital 0 bis 120 km/h	"
Wegepunkte:	200 WP	
Routen:	20 Routen mit max. je 30 W	P
Restricted Areas	20 CTR's frei, 150 CTRs kostenpflichtig	
Max. Speicherzeit:	55 Std. Flugzeit bei 10 s Aufzeichnungsintervall	
Anzahl der Tracklog-Punkte:	24 000	
Anzahl der aufgezeichn. Flüge:	100	

Datenspeicherung und Transfer nach dem IGC Format

Bildschirmauflösung Betriebstemperatur 38'400 Pixel / 240 x 160 Pixel (= 1/8 VGA) -15 ... 45 °C

Halterungen für Drachen und Gleitschirm sind verfügbar

Die technischen Daten können jederzeit ohne Voranmeldung geändert werden. Software Upgrade ist nach Herunterladen der neuesten Version von unserer Homepage aus dem Internet über einen Anwender - PC möglich.

3 Haftungsausschluss:

Es kann in seltenen Fällen vorkommen, dass das Fluginstrument gar keine Daten oder fehlerhafte Daten liefert. Die Fa. Flytec AG wird alle Forderungen für Schäden die durch ein Fehlverhalten ihres Gerätes hervorgerufen wurden, ablehnen. Der Pilot allein ist voll verantwortlich für die sichere Durchführung seiner Flüge.